Vocabulary Tree Hypotheses and Co-Occurrences

Martin Winter, Sandra Ober, Clemens Arth, and Horst Bischof

Institute for Computer Graphics and Vision, Graz University of Technology
{winter,ober,arth,bischof}@icg.tu—graz.ac.at

Abstract

This paper introduces an efficient method to substantially
increase the recognition performance of a vocabulary tree
based recognition system. We propose to combine the hy-
pothesis obtained by a standard inverse object voting al-
gorithm with reliable descriptor co-occurrences. The al-
gorithm operates on different depths of a standard k-means
tree, coevally benefiting from the advantages of different lev-
els of information abstraction. The visual vocabulary tree
shows good results when a large number of distinctive de-
scriptors form a large visual vocabulary. Co-occurrences
perform well even on a coarse object representation with a
few number of visual words. We demonstrate the achieved
performance increase, robustness to occlusions and back-
ground clutter in a challenging object recognition task on a
subset of the Amsterdam Library of Object Images (ALOI).

1 Introduction

Besides a number of well known (and partially solved) prob-
lems in computer vision (e.g. illumination conditions, oc-
clusions, viewpoint changes a.s.0.), recent research inter-
est has focused on the problem of object recognition in
large databases. Encouraging recognition rates have been
achieved using tree-like representations of local descriptors.

One typical example is the approach of David Lowe [12],
who organized SIFT descriptors from all training images in
a kd-tree with a best-bin-first modification to find approxi-
mate nearest neighbors to the descriptor vectors of the query.
The correspondences of the matched descriptor pairs of the
query and kd-tree patches have to be confirmed or rejected
in further verification and consistency checks. Another ap-
proach is the one from Lepetit e.al. [11], who were the first
to introduce multiple randomized trees as classification tech-
nique. Their approach mainly focused on the detection of
a single object, which is fast enough for real-time applica-
tions. Obdrzalek and Matas [18] used a binary decision tree
to index keypoints and minimize the average time to deci-
sion. The leaves of the tree represent a few local image areas
where every inner node is associated with a weak classifier.
They demonstrated the robustness of their method to back-
ground clutter, occlusion, and large changes of viewpoints
with hundreds of objects. Nistér and Stewénius [17] pre-
sented an approach where hundred thousands of local de-
scriptor vectors are quantized in a hierarchical vocabulary
tree. It is able to organize a database of 1 million images.

They presented a scoring scheme which results have to be
verified in an additional post-verification step using the ge-
ometry of the matched keypoints of the n top ranked objects
to improve the retrieval quality.

Common to most of the approaches mentioned is the
need for such a post-verification algorithm to guarantee for
an acceptable performance rate and stable recognition re-
sults. A popular method is using geometrical constraints
for eliminating false positives and strengthening correct hy-
potheses [17]. Another possibility are consistency checks of
local neighbor relations of interest points [22].

While all of these algorithms require additional compu-
tational overhead, the information we incorporate into our
system can be obtained almost for free from our own tree-
based representation. In particular, we build a hierarchical
vocabulary tree and apply inverse voting similar to Nistér
and Stewénius [17]. The inverse voting uses the leaves of
the tree. Another very coarse representation is taken from a
lower tree level. To obtain a high distinctiveness of that rep-
resentation, we use a very efficient, yet memory and com-
putationally efficient specificity of spatial relations, namely
co-occurrences of descriptors. A rather simple, but effec-
tive arbitration strategy is used to foster the hypotheses of
inverse voting.

In the following section we describe the building pro-
cess for our vocabulary tree and section 3 outlines the co-
occurrence representation. The final decision rules are de-
scribed in section 4. Finally, we demonstrate the power of
our approach in the experimental section 5.

2 Building the Vocabulary Tree

2.1 Feature detection and description

In our approach (depicted in Fig. 1), we use Lowe’s Dif-
ference of Gaussian (DoG) detector together with SIFT-
keys [12] to obtain rather accurate keypoints with high re-
peatability [7]. DoG keypoints have been proposed to-
gether with SIFT-keys and show excellent recall perfor-
mance [13, 15].

The DoG-detector takes the differences of Gaussian
blurred images as an approximation of the scale normalized
Laplacian and uses the local maxima of the responses in
scale space as an indicator for a keypoint. We mention, that
the approach is not restricted to DoG-points. Any other
keypoint detector with high repeatability can be used in-
stead. SIFT-descriptors are quantized gradient histograms.
Those gradient histograms are calculated in a subdivided

mailto:winter@icg.tu-graz.ac.at

Vocabulary Tree Hypotheses and Co-Occurrences

| Keypoint Detection + Region Description |

I [L [
E LI-”.' JJJl' J-U.' J_IJ Descriptors ’Jﬁl

b B

Level 2

Level 1

Level O

FERREREOTERRRERD T~

Results

&

Arbitration
Strategy

\ \
4 o
2 c, C
bop. PR
%, % . 8

% 72,
Y @% OG
Bag of

NN Search

Visual Words Co-Occurrences
/
__________ /
Query Objects
Descriptors
I Keypoint
Up Detection
I~ +
r'—J: Region
| Description

Figure 1: Diagram of our object recognition framework. On the left, the training process is illustrated. For generating the visual vocabulary,
a limited number of objects is chosen and descriptor extraction is followed by agglomerative clustering and building a k-means tree (k = 4
in the case depicted here). The tree is drawn upside-down to make clear that the outcome of the agglomerative clustering algorithm forms
the leaves of our k-means tree. For all objects in our database, we extract descriptors, store the nearest neighbor matches in an inverted file
structure and coevally extract co-occurrence information from a lower level of our tree (level two in the case described here). Querying works
as depicted on the right side of our diagram. Descriptors are extracted from our query object and the nearest neighbors in our tree are used to
build an inverse voting result, simultaneously collecting co-occurrences for our second voting algorithm. A final arbitration strategy is used

to draw the final decision.

patch in order to cover spatial information. The descriptor
dimensionality is 128. In order to be robust against pixel
noise and to avoid the detection of too large regions, we
restricted the scale of the obtained DoG-points.

2.2 Building the vocabulary tree

We use a hierarchical k-means tree as data structure for fast
indexing and retrieval of descriptors as illustrated in Fig-
ure 1. Instead of building the tree with hundred thousands
of descriptors, we propose a tree, where a lower number of
visual words act as leaves, because Nistér and Stewénius
have shown in [17], that for more than 100K leaf nodes no
substantial performance increase can be expected. There-
fore we quantize our feature descriptor vectors with unsu-
pervised agglomerative hierarchical clustering to obtain the
visual words which will act as leaf nodes in our vocabu-

lary tree and used the proposed Average-Link algorithm with
RNNs of Leibe et.al. described in [10], which has feasible
runtime properties and can deal which such a large number
of descriptors. The main advantage of this algorithm is the
fact, that we have to select only one parameter to tune the
quantization properties as we can easily select the tolerated
dissimilarity of two points belonging to the same cluster in
the descriptor space.

These visual words are quantized in a repeated k-means
clustering with a fixed k down the levels of the hierarchical
tree. At every node the set of descriptor vectors clustered
by k-means is partitioned in k nodes and propagated to the
next level until no further splitting is possible. The number
of visual words, that can be represented is kL, where k is
the branch factor and L is the deepest level of the tree as
illustrated in Figure 1.

Martin Winter, Sandra Ober, Clemens Arth, and Horst Bischof

Pre-clustering of descriptors into visual words decreases
the computational overhead for building the hierarchical
tree. Furthermore, we get a very well balanced tree which
will allow us to index and retrieve images or objects we
never had in the training set of the descriptor vectors for
building the tree. In our experiments we show the power of
this vocabulary tree which has to be built only once. Thus
we can reduce the time spent for building the tree (includ-
ing agglomerative pre-clustering) from several days to a few
hours.

2.3 Implementation of indexing

We have to take notice that we want to build a very balanced
tree where the training and recognition of new objects is pos-
sible without any retraining of the tree. New objects are
learned and inserted in the tree by firstly detecting feature
descriptor vectors. Secondly, every descriptor vector starts
at the root level of the vocabulary tree and will be compared
with the next possible node clusters of the next level / using
Lo-norm. After the next nearest cluster node is selected the
feature descriptor goes down the tree level per level until it
will end at a leaf node.

Because every leaf node has a unique index, we can rep-
resent every image as a set of index numbers like a finger-
print. Those index numbers are used to store all those pre-
matches in an inverted file structure (IFS), which is a very
efficient way to handle recognition in large image databases.
Every index of this IFS is assigned with all object- or im-
age ID-number where their descriptor vectors have matched
with this leaf node. The vocabulary tree and the IFS will be
needed for the later recognition step.

We can clearly see that insertion of further objects is very
easy and fast. The tree is usually not very deep and the num-
ber of node clusters k is chosen to be very small (typically
8 to 12). So the number of comparisons by traversing the
descriptor vector through the tree is obviously very low and
therefore we can achieve very high performance rates not
only during the training (indexing) but also during the recog-
nition (scoring) step.

2.4 Generation of vocabulary tree hypotheses

To recognize an object or image with the vocabulary tree
it is obvious, that we can use the same routine as for in-
dexing. We detect feature descriptor vectors and propagate
them down the vocabulary tree by comparing the descriptor
vector to the k nearest node centers and choosing the near-
est one for the next level. As explained before we collect
the number of leaf indices for our unknown object or image
similarly to indexing. We use those gathered indices with
our inverted file structure to set up a scoring table for each
object or image. This scoring table gives us an object vot-
ing list ranked by the number of found matched feature de-
scriptor vectors. This first hypothesis has to be normalized
by the number of feature descriptor vectors for each object
or image used in the indexing step. This is very important,
because we can achieve fairness for every database object or
image to be recognized even if the number of descriptor vec-
tors is very low and therefore the number of occurrences in
the IFS is very sparse. We also investigated other methods of

y1

'y2

y3

Figure 2: Illustration of finding the nearest neighbors in image
space and corresponding entries to the co-occurrence matrix for a
certain keypoint. The centers of the DoG-points are indicated by
red dots.

scoring, but we could not achieve substantially better results.
This very fast generated hypothesis has to be verified by an-
other step to improve the retrieval quality. Instead of using a
separated computationally demanding method like using the
geometry of the matched keypoints or counting the number
of matching nearest neighbors, we present a more efficient
way to verify generated hypotheses by boosting them with
co-occurrences gathered online at a lower tree level.

3 Co-Occurrences of descriptors

Spatial relations among keypoints have already been inves-
tigated by many authors (e.g. [1, 2, 3,4, 5, 6,9, 14, 16, 19,
20, 21]) and it has been shown, that they can significantly
improve recognition performance. In our approach, we use
a very simple specificity of spatial relations which can be
efficiently obtained from a coarse level of the already calcu-
lated k-means tree (see Figure 1 for illustration). Moreover,
we use a very extreme form of co-occurrences as we repre-
sent only the presence or absence of co-occurrences. The
intuition behind is, that the co-occurrence of descriptors is
very discriminative because it is very unlikely, that two de-
scriptors co-occur just by chance.

In particular, we take the best matching cluster center in
a very low depth k-means tree level already calculated(!) so
that for every keypoint in the image a corresponding cluster
index is stored. There is nearly no additional computational
effort necessary to extract that representation out of the tree.
Please note, that the number of cluster indices is substantial

Vocabulary Tree Hypotheses and Co-Occurrences

lower than the number of clusters used for the inverse voting
approach. While building the vocabulary tree in an off-line
calculation, we obtain n cluster indices in a depth [of the
tree (k is the branch factor indicating the number of children
for every node):

n=Fk (D

In our experiments, we have chosen a branch factor of
k = 9 to obtain best results and selected tree levels [, =
2, 3, 4 for co-occurrences thus causing n. = 81, 729 or 6561
co-occurrence cluster indices. This is about a factor of 20,
190 or 1600 less cluster indices than visual words used for
the inverse voting.

To calculate the co-occurrence matrix, we simply iden-
tify the nearest neighbor for every keypoint in image space.
Thus, every co-occurrence is identified by a pair of clus-
ter indices which we insert into the two-dimensional co-
occurrence matrix. Figure 2 illustrates this procedure. The
nearest neighbor property of certain interest points in the im-
age space is sometimes violated by spurious highlights, un-
stable detection of keypoints and of course aspect changes
introduced by different viewpoints. We alleviate this prob-
lem by entering the n nearest neighbors (typically n = 3) in
the co-occurrence matrix.

For a reasonable amount of cluster centers, the co-
occurrence matrix is sparsely populated and typically only a
few permils of all the possible co-occurrences are assigned.
Multiple occurrences are even much more unlikely so that
it is possible to limit the entries to the binary information,
whether a specific co-occurrence is observed for a certain
object or not. This binary coding and a sparse storage
scheme allow us to reduce the necessary amount of memory
to a minimum.

To build the full representation for a single object (multi-
ple viewpoints), all the co-occurrences of the trained images
are entered in one single two-dimensional matrix (in fact a
simple list is used). This limits the necessary amount of
memory per object. The sparsity of the co-occurrence ma-
trix avoids its over population. Therefore, we have exactly
one co-occurrence matrix per object trained and the final di-
mensionality of the training data representation is given by
the squared number of cluster centers times the number of
objects represented in the database.

For the recognition of objects with the co-occurrence
matrices we follow in principle the queue for training but
for a single query image. We calculate keypoints, com-
pute the descriptors, identify the associated cluster indices
by traversing the k-means tree and build the co-occurrence
matrix for the query image. The matching procedure itself
is deliberately kept very simple. We calculate the matching
score for every object representation of the training database
by a simple AND operation of the sparse co-occurrence ma-
trices and counting the number of resulting matches. In fact,
the matching is only a primitive maximum voting of congru-
ent co-occurrences in the binary matrices.

4 Arbitration Strategy

The arbitration-component improves the results of the stan-
dard inverse voting approach with the additional information
obtained by the co-occurrences. As we want to avoid any
time consuming adaptation to a specific data set, we apply a
heuristic algorithm providing good results.

The results of ‘inverse voting approach’ and ‘co-
occurrences’ cannot be directly combined due to the
completely different matching strategy. So we ‘unify’ the
output to a very abstract layer. Each algorithm selects one
object as distinct answer and provides a ‘level of signifi-
cance’. In particular we use three levels of significance:
‘unambiguous’, ‘low confidence’ and ‘unknown’ object.
A simple set of rules is used to adjudicate on further
processing.

object getFinalObjHypoth|InvVoting, Colcc)
{

object final:

if (InvWoting.objHypoth == Colcc.objHypoth)

i
/¢ hypotheses agree
firal = InvVoting.objHypoth:

+

else if[InvVoting.confRate == 3 |

{
/¢ inverse wvoting hypothesis is confident
fipal = InvVoting.objHypoth;

i

else if(| InvVoting.confRate > Codcc.confRate

{
/¢ inverse wvoting is more confident than Colec
firal = InvVoting.obhjHypoth:

b

else if{ Colcoc.confRate > InvWoting.confRate |

i
Sf Codce are more confident than inverse voting
firal = CoCcc.objHypoth:

i

elae

{
/¢ get decision from ranking of hypotheses
firal = RankingFunction|InvVoting, Colcc):

}

return final:
}

object RankingFunction (InvWVoting, CoOcc)
i

ranking iVE
ranking cOR

= InvWoting.ohjHypoth.rankingInHistogram:
= CoCcc.objHypoth.rankingInHistogram:
if{ iVR is better than cOR)
/¢ inverse wvoting hypothesis is chosen
return InvWoting.objHypoth;
else
/¢ cooccurrence hypothesis is chosen
return Codcc.objHypoth;

Figure 3: Pseudo-Code of our arbitration-module.

If the inverse object voting algorithm shows ‘unambigu-
ous’ confidence, the proper object is used as final selection.
If the inverse object voting algorithm shows lower confi-
dence (‘low confidence’, ‘unknown’) the result obtained by
the co-occurrence vote is taken into account. A special han-
dling is required if both approaches have the same (low)
level of significance but vote for different objects. In this

Martin Winter, Sandra Ober, Clemens Arth, and Horst Bischof

case, we search for the ranking of each selected object in
the other algorithms ranking cue. Finally the object with the
prior ranking is selected. A pseudo-code of the arbitration-
module is depicted in Figure 3.

4.1 Level of significance for inverse object voting

The significance value of the voting histogram obtained by
the inverse object voting algorithm could easily be evaluated
by computing the ratio between the number of votes of the
first and second ranked objects. The lower the ratio, the
higher is the difference between those two ranked objects
and therefore the significance score will be set higher.
T2

k=)
T

where x is the number of votes of the top ranked object
and x5 the counts of the second one.

k <ty = ‘unambiguous’
ty <=k <=t1 = ‘low confidence 3)
k > t1 = ‘unknown’

Best results could be achieved if the thresholds are set as
follows: t1 = 0.6 and t5 = 0.5.

4.2 Level of significance for co-occurrences

The level of significance for co-occurrences is determined
by two facts. The first one is an absolute threshold, which
assigns all objects with less than ¢ matched co-occurrences
to the ‘unknown’ confidence level (typically ¢ = 5). The
second one is related to the ‘peakedness’ of the voting his-
togram for co-occurrences. As a quantitative estimate for
that, we calculate the kurtosis of the discrete voting his-
togram function. The kurtosis k£ of N discrete samples is
a statistical measure for the ‘peakedness’ of a function and
is defined by

1N fz—7*
— J
k_N;< -) @)

where x; is the j-th sample (voting histogram entry), T
the mean of the samples and o the standard deviation of the
samples distribution.

As the ‘ideal kurtosis’ (impulse function) for a perfect
voting histogram is proportional to the number of objects
(discrete samples in histogram), we normalized the kurtosis.
Thus we can choose the decision thresholds for assignment
to different confidence levels relative to the ‘ideal kurtosis’

(t17 t2)

k >=t; = ‘unambiguous’
to <=k < t; = ‘low confidence (5)
k <ty = ‘unknown’

In our experiments we obtained best results by setting
tl = 33% and tg = 10%

S Experiments

For the object recognition task we took a subset of 400 ob-
jects from the publicly available Amsterdam Library of Ob-
ject Images (ALOI) [8] (see Figure 5 for some examples).

The ALOI database consists of 1000 different objects cap-
tured on a turntable with 5 degree viewpoint changes and
different illumination conditions. We primarily selected the
objects according to the requirement to have a sufficient
number of DoG keypoints detected on the objects surface.

To obtain visual words we detected DoG-points and cal-
culated SIFT descriptors in only a subset of 100 labeled ob-
jects presented in 7 different views (700 images from —90°
to 90° in steps of 30°) and performed an agglomerative pre-
clustering. After that we generated a k-means vocabulary
tree with a branch factor of £ = 9 with about 140.000 visual
words received from the previous pre-clustering process.

In order to capture enough variances in the appearances
of an object during the training stage, we presented 5 views
of 400 objects to the system (2000 images from —60° to
+60° in steps of 30°). Descriptors of the first 100 objects
were included in the training set of the vocabulary tree, but
300 objects presented totally new feature descriptors. To
evaluate the recognition rate we took 13 views from 400
trained objects (from —60° to +60° in steps of 10°) and
performed queries with 5200 sample images.

We investigated the performance rates of this vocabulary
tree and its inverted file structure in the following experi-
ments. The first experiment shows the better recognition
rate obtained by our efficient arbitration strategy with differ-
ent numbers of clusters used by descriptor co-occurrences.
After that we demonstrate the robustness of our approach to
background clutter and occlusion.

P CRUERURR S £ T WU Y U BV S

o
o
o

mean recall rate
[=]

o o

o o

T T

: =@ standard inverse voting
[Vl “EEETRPEIRTR .
: our arbitration strategy (2"“j level Co-Occurrences)

: = A =our arbitration strategy (3"j level Co-Occurrences)
ogsk-on]

=B= gur arbitration strategy (4"' level Co-Occurrences)

08 L i H i L i
-50 -30 10 10 0 50
rotation [°].

Figure 4: Comparison of different recall rates for different levels
of co-occurrences. Using only a little amount of additional infor-
mation from the second level in the vocabulary tree results in an
average performance increase of about 4%. While accessing in-
formation from the third level leads to an overall increase of up
to 12% there is no further performance improvement when taking
into account information from a higher level (fourth level results in
about 11%).

5.1 Performance comparisons

In this experiment we investigate the influence of additional
information from different levels of co-occurrences on the

Vocabulary Tree Hypotheses and Co-Occurrences

Figure 5: 32 sample images from 400 selected objects from the
ALOI database used in our object recognition system. To illustrate
the challenge, we have selected a number of very similar objects
which might easily be confused, as well as a number of very com-
plex objects which are rather hard to capture in an object represen-
tation.

final recognition performance. In Figure 4 the results of our
method and the pure inverse voting result on the whole ro-
tation range of 120 degrees are shown to demonstrate the
power of our approach. While the blue curve describes the
results from the standard inverse voting, the other curves are
obtained incorporating information from three different lev-
els of co-occurrences into our final reasoner. An overall
increase of about 4%, 12% and 11% can be observed us-
ing information from levels two, three and four. There is a
performance maxima using co-occurrence information from
level three, which means that a number of 9> = 729 co-
occurrence cluster centers is considered. At the same time
this means that the abstract information extracted from this
level generalizes best for this object recognition setup. On
the one hand a level of two results in an 8 1x81 co-occurrence
matrix which is small and thus too noisy to gain a significant
advantage from. On the other hand, a level of four produces
a 6561x6561 matrix, which is taken about two levels above
the leaves of the tree.

In Figure 6, four query examples, the intermediate results
and the final object hypotheses are depicted. The first three
query objects are labeled correctly (indicated by a green bor-

Query Objects CoOccurrences Inverse Voting Final Results
842
a)
PICKWICK
b)
c)
d)

Figure 6: Four sample query images, the intermediate outcomes
and the final results of our arbitration strategy are shown from left
to right. While correct hypotheses are marked with a green border,
a red border indicates a wrong outcome.

der) by our arbitration strategy although one of the interme-
diate object hypotheses is incorrect (red border). In the first
two cases, the use of co-occurrences enables our approach to
drawing the right decision even if the inverse voting chooses
the wrong object. In the third case the arbitration-module
still correctly favors a strong inverse voting result over a
weak co-occurrence voting. The last object is labeled in-
correctly, but note that the query object is a member of
the group of objects chosen to be the correct hypothesis.
Though the representation of the query object is a real sub-
set of the representation of the hypothesis chosen, such an
outcome is still registered as an error in our performance
evaluation.

5.2 Substantial cluttered background images

For a realistic object recognition scenario, we projected each
object onto a set of complex background images. Figure 8
depicts the mean recall rates for 400 objects on substantial
cluttered background images using the segmentation masks
provided in [8] (see Figure 7 for some examples). Please
note, that the background images are especially challeng-
ing due to the high number of interest points obtained on
the background. Thus the number of descriptors calculated
on the background part is almost a multiple of that obtained
on the objects surface. It is natural that the averaged recall
rate is not as high as in the ideal case with segmented ob-
jects. However, for query images not seen during training
an average increase in recognition rate of about 9% can be
observed.

5.3 Results obtained by occlusion

To support the claim on the robustness of the obtained per-
formance increase for occluded objects, we made some ex-
periments with varying partial occlusions of the objects in
recognition. We simulate the occlusions by removing a sub-
stantial part of the objects keypoints (similar to a black rect-
angle applied on the image). As the objects of the ALOI
database are not normalized with respect to their appear-

Martin Winter, Sandra Ober, Clemens Arth, and Horst Bischof

Figure 7: 8 sample images from 400 selected objects from the
ALOI database projected on different backgrounds.

ance size (objects are of completely different size), a relative
occlusion with respect to the full image dimensions would
penalize small objects. It can happen, that such objects ‘dis-
appear’ completely as no more keypoints are left even for
a small amount of total image occlusion. Therefore we de-
termined the relative area of occlusion for each object sep-
arately and with respect to the lateral cut of the particular
object observed.

Figure 9 shows the mean recall rates for a different
amount of occlusions. The mean recall rates for the (stan-
dard) inverse voting approach and our combined approach
(arbitration strategy) remain rather stable up to an occlu-
sion about 40% showing the robustness of local approaches
to substantial occlusions. The performance increase by our
combined approach is also constant about 8-10% with re-
spect to the standard approach for all tested occlusions.

A motivation for the usage of weaker descriptors comes
from the fact, that the recognition speed of the current
implementation is limited by the runtime of the already
highly optimized C/C++ implementations of keypoint detec-
tion (DoG) and their descriptors (SIFT) [12] while our ap-
proach is currently implemented in MATLAB. Table 1 gives
araw overview about the relative runtime effort spent in dif-
ferent components of the recognition stage. Only 17.4% of

0.8

mean recall rate
o
3
T

g
)
T

=@— standard inverse voting
0.4 = @ = our arbitration strategy (3rrj level) N

L L L L L L
-50 -30 -10 10 30 50
rotation [°].

Figure 8: Mean recall for objects projected on a set of substantial
cluttered background images.

1 T T T T T T

S Gk RPN
0.5 ‘.."“'-“

o7

06f

04

mean recall rate

03

=—@— standard inverse voting

aik = & = our arbitration strategy (3"j level co-occurrences)

o ! ! L L L L
1} 10 20 20 40 50 [=a] 70 &0 a0 100

relative occlusion [%]

Figure 9: Mean recall rates of the inverse voting approach and our
arbitration strategy for a different amount of occlusions.

the overall burden for recognition is used for the assignment
of obtained query-features to the corresponding cluster cen-
ters by the k-means tree. The computational costs for the
voting and arbitration strategy parts are nearly negligible.
So reducing the calculation effort for keypoint detection and
descriptor calculation by coevally obtaining high recogni-
tion performance would further improve the efficiency of
our approach.

6 Conclusion and Future Work

In this paper we have introduced a new method to increase
the recognition performance of a vocabulary tree based
recognition system. We improved the hypotheses of an in-
verse object voting algorithm by a very simple specificity
of spatial relations, namely descriptor co-occurrences. A
rather heuristic but powerful arbitration strategy with min-
imal computational effort amplifies the specific strengths

Vocabulary Tree Hypotheses and Co-Occurrences

component runtime (ms) | %
DoG and SIFT calculation 3351 80.6
assignment (tree propagation) 723 17.4
inverse voting 62 1.5
co-occurrences 15 0.4
arbitration strategy 4 0.1

Table 1: Mean runtimes of certain recognition components ob-
tained on a Intel Xeon 2.80GHz CPU.

of the particular representations. The achieved increase of
performance has been demonstrated in a challenging object
recognition task and we have also shown the robustness of
the approach even for a substantial amount of occlusions and
cluttered background.

The main advantage of our approach is the fact, that we
use two different levels of information abstraction provided
in various depths of the tree. Thus we can avoid the calcu-
lation of an additional, computational representation for the
post verification step. As the main computational burden of
the recognition system is carried by calculation of the key-
points and their descriptors, in future research we will use
our approach to work with even weaker detectors and de-
scriptors but keeping recall rates high by combination of two
or more levels of information abstraction.

References

[1] Ankur Agarwal and Bill Triggs. Hyperfeatures —
multilevel local coding for visual recognition. In
Proceedings 9th European Conference on Computer Vision,
volume 3951 of Lecture Notes in Computer Science, pages
30-43. Springer, 2006.

[2] Guillaume Bouchard and Bill Triggs. Hierarchical
part-based visual object categorization. In Proceedings
IEEE Conference on Computer Vision and Pattern Recognition,
volume 1, pages 710-715, 2005.

[3] Gustavo Carneiro and David Lowe. Sparse flexible
models of local features. In Proceedings 9th European
Conference on Computer Vision, volume 3953 of Lecture Notes
in Computer Science, pages 29-43, 2006.

[4] David J. Crandall and Daniel P. Huttenlocher. Weakly
supervised learning of part-based spatial models for
visual object recognition. In Proceedings 9th European
Conference on Computer Vision, volume 3951 of Lecture Notes
in Computer Science, pages 16—29. Springer, 2006.

[5] Rob Fergus, Pietro Perona, and Andrew Zisserman.
Object class recognition by unsupervised
scale-invariant learning. In Proceedings IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages
264-271, June 2003.

[6] Rob Fergus, Pietro Perona, and Andrew Zisserman. A
sparse object category model for efficient learning and
exhaustive recognition. In Proceedings IEEE Conference on
Computer Vision and Pattern Recognition, 2005.

[7] Friedrich Fraundorfer and Horst Bischof. Evaluation
of local detectors on non-planar scenes. In Proceedings
28th Workshop of the Austrian Association for Pattern Recognition,

2004.

[8] Jan-Mark Geusebroek, Gertjan J. Burghouts, and
Arnold W. M. Smeulders. The Amsterdam library of
object images. International Journal of Computer Vision,
61(1):103-112, 2005.

[9] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce.
Affine-invariant local descriptors and neighborhood
statistics fortexture recognition. In Proceedings 9th
International Conference on Computer Vision, pages 649-655,
2003.

[10] Bastian Leibe, Krystian Mikolajczyk, and Bernt
Schiele. Efficient clustering and matching for object
class recognition. In Proceedings 17th British Machine Vision
Conference, 2006.

[11] Vincent Lepetit, Pascal Lagger, and Pascal Fua.
Randomized trees for real-time keypoint recognition.
Proceedings IEEE Conference on Computer Vision and Pattern
Recognition, 2:775-781, 2005.

[12] David Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of Computer
Vision, 60:91-110, 2004.

[13] Krystian Mikolajczk and Cordelia Schmid. A
performance evaluation of local descriptors. In
Proceedings IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 257-263, June 2003.

[14] Krystian Mikolajczyk, Bastian Leibe, and Bernt
Schiele. Multiple object class detecton with a
generative model. In Proceedings IEEE Conference on
Computer Vision and Pattern Recognition, 2006.

[15] Krystian Mikolajczyk and Cordelia Schmid. A
performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
27(10):1615-1630, Oktober 2005.

[16] Takeshi Mita, Toshimitsu Kaneko, and Osamu Hori.
Joint haar-like features for face detection. In
Proceedings 10th International Conference on Computer Vision,
volume 2, pages 1619-1626, 2005.

[17] David Nistér and Henrik Stewénius. Scalable
recognition with a vocabulary tree. In Proceedings IEEE
Conference on Computer Vision and Pattern Recognition, pages
2161-2168, 2006.

[18] Stepan Obdrzalek and Jiri Matas. Sub-linear indexing
for large scale object recognition. In Proceedings 16th
British Machine Vision Conference, volume 2, 2005.

[19] Andreas Opelt, Axel Pinz, and Andrew Zisserman.
Incremental learning of object detectors using a visual
alphabet. In Proceedings IEEE Conference on Computer Vision
and Pattern Recognition, volume 1, pages 3—10, 2006.

[20] Cordelia Schmid and Roger Mohr. Local grayvalue
invariants for image retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19:530-535, 1997.

[21] Josef Sivic, Bryan C. Russell, Alexei A. Efros,
Andrew Zisserman, and William T. Freeman.
Discovering objects and their location in images. In
Proceedings 10th International Conference on Computer Vision,
volume 1, pages 370-377, 2005.

[22] Josef Sivic and Andrew Zisserman. Video google: a
text retrieval approach to object matching in videos.

In Proceedings 9th International Conference on Computer Vision,

pages 1470-1477 vol.2, 2003.

	Introduction
	Building the Vocabulary Tree
	Feature detection and description
	Building the vocabulary tree
	Implementation of indexing
	Generation of vocabulary tree hypotheses

	Co-Occurrences of descriptors
	Arbitration Strategy
	Level of significance for inverse object voting
	Level of significance for co-occurrences

	Experiments
	Performance comparisons
	Substantial cluttered background images
	Results obtained by occlusion

	Conclusion and Future Work
	References

